

Maths With Malini

BOARD PATTERN SAMPLE PAPER5

Class 12 - Mathematics

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

This question paper contains 5 sections A,B,C, D and E ach section is compulsory however there are internal choices in some questions.

Section A has 18 MCQs and two Assertion -Reason based questions of 1 mark each.

Section B has five very short answer VSA type questions of 2 marks each.

Section C has 6 short answer SA type questions of 3 marks each.

Section D has four long answer LA type questions of 5 marks each.

Section E has three source based /case based/ passage based/ integrated units of assessment 4 marks each with subparts.

Section A

1.	The sum of the vectors \overrightarrow{a}	$= \; \hat{i} - 2\hat{k}, \overrightarrow{b} = \;$	$-2\hat{i}+4\hat{j}+5\hat{k}$ d	and $\overrightarrow{c}=\;\hat{i}-6\hat{j}$ -	$-7\hat{k}$ is	1]
		,	· ·	U		

a)
$$-4\hat{j}+\hat{k}$$

b)
$$-4\hat{j}-\hat{l}$$

c)
$$4\hat{j}-\hat{k}$$

d)
$$4\hat{j} + \hat{k}$$

3. If lines
$$\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$$
 and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular then find the value of k. [1]

a)
$$10/7$$

$$d) -10/7$$

4. Let f: R->R be defined by
$$\begin{cases} 2x : x > 3 \\ x^2 : 1 < x \le 3 \text{ and } 3x : \text{ if } x \le 1 \end{cases}$$
. Find f(-1)+f(2)+f(4).

5. Evaluate
$$\int \frac{dx}{\sqrt{1-2x-x^2}}$$

[1]

a)
$$\sin^{-1}x/\sqrt{2} + c$$

b)
$$\cos^{-1}x/\sqrt{2} + c$$

	c) $\sin^{-1}[(X+1)/\sqrt{2}] + c$	d) $\cos^{-1}[(X+1)/\sqrt{2}] + c$			
6.	$\sin^{-1}(rac{1}{2}) \ + 2\cos^{-1}ig(rac{1}{2}ig) + 4cot^{-1}ig(rac{1}{\sqrt{3}}ig)$ is equal to	0	[1]		
	a) 4π/3	b) 13π/6			
	c) π/3	d) 3π/4			
7.	Evaluate: $\int \left(2tanx-3cotx ight)^2 dx$		[1]		
	a) 4tanx-9cotx-25x+c	b) -4tanx -9cotx-25x+c			
	c) 4tanx+9cotx+25x+c	d) -4tanx+9cotx+25x+c			
8.	If $y = ae^x + be^{-x} + c$, where a,b,c are parameters	, then y' is equal to	[1]		
	a) $ae^x - be^{-x}$	b) $ae^x - be^{-x} + c$			
	c) $ae^x + be^{-x}$	$\mathrm{d}) - (ae^x + be^{-x})$			
9.	The function $f(X) = \log(1+x) - \frac{2x}{2+x}$ is increasing on				
	a) $(-\infty,\infty)$	b) $(-\infty,0)$ d) $(-1,\infty)$			
	c) None	d) $(-1,\infty)$			
10.	The area of the region bounded by the lines $Y=x+$	1 and $X = 2$, $X = 3$ is	[1]		
	a) 7/2 sq units	b) 13/2 sq units			
	c) 9/2 sq units	d) 11/2 sq units			
11.	The degree of the differential equation $\left(\frac{d2y}{dx^2}\right)^{2/3}$ +	$4-3rac{dy}{dx}=0$ is	[1]		
	a) 1	b) 3			
	c) 0	d) 2			
12.	If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of points A, B, C respec	ctively such that , $5\vec{a}-3\vec{b}-2\vec{c}~=0$ then find the ratio in	[1]		
	which C divides AB externally.				
	a) 2:5	b) 5:2			
	c) 3:5	d) 1:3			
13.	Domain of cos ⁻¹ [X] where [] denotes G.I.F is		[1]		
	a) [-1,2)	b) (-1,2]			
	c) [-1,2]	d) None			
14.	If $y = \log_{10} x + \log_e y$, then $\frac{dy}{dx}$ is equal to		[1]		
	a) $\frac{\log_{10} e}{x} \left(\frac{y-1}{y} \right)$	b) $\frac{y}{y-1}$			
	c) $\frac{\log_{10} e}{x} \left(\frac{y}{y-1} \right)$	d) y/x			
15.	Let R be a relation on the set N of natural numbers of	denoted by nRm where N is a factor of m, then R	[1]		
	a) Reflex, transitive but not symmetric	b) Equivalence relation			
	c) Reflexive and symmetric	d) Transitive and symmetric			
16.	Evaluate $\int \left(e^{x\log a} + e^{a\log x} + e^{a\log a}\right) dx$		[1]		
	a) $\frac{a^x}{\log x} + \frac{x^{a+1}}{a+1} + a^a x + c$	b) $rac{a^x}{\log a}+rac{x^{a+1}}{a+1}+a^ax+c$			

c)
$$\frac{a^x}{\log 9} + \frac{x^a}{a+1} + a^a x + c$$

d)
$$\frac{a^x}{\log a} + \frac{x^{a+1}}{a-1} + ax^a + c$$

- 17. If f is a real valued differentiable function satisfying $[(f(x)-f(y))] \le (x-y)^2$, $x,y \in \mathbb{R}$ and f(0)=0, then f(1) equals
 - a) 0

b) 2

c) 1

- d) -1
- 18. The order of the differential equation whose general solution is given by $y = (C_1 + C_2)\cos(x + C_3) C_4e^{x + C_5}$ where [1] C1 to C5 are arbitrary constants, is
 - a) 5

b) 3

c) 4

- d) 2
- 19. Assertion A: the unit vector in the direction of sum of the vectors

[1]

[1]

$$ar{i} \,+\, ar{j} \,+\, ar{k} \,,\, 2ar{i} \,-\, ar{j} \,-\, ar{k} \,, 2ar{j} \,+\, 6ar{k} \,is \,-\, rac{1}{7} \Big(3ar{i} \,+\, 2ar{j} \,+\, 6ar{k} \Big)$$

Reason R: let \vec{a} be a non zero vector then $\frac{\vec{a}}{|\vec{a}|}$ is a unit vector parallel to \vec{a} .

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

- d) A is false but R is true.
- 20. Let E1 and E2 the any two events associated with an experiment then

[1]

Assertion A: $P(E1) + P(E2) \le 1$

Reason R: P(E1)+P(E2)+P(E1UE2).

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

Section B

21. If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = AA^{T}$, then find the value of 5a+b.

[2]

OR

If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$$
 $and B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, then find $(AB)^{-1}$.

22. Prove that the area enclosed between the x-axis and the curve $y=x^2-1$ is 4/3 sq units.

[2]

23. If $\vec{a}=2\hat{i}+3\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2\hat{j}+3\hat{k}$ then find $|\overrightarrow{a}\overrightarrow{x}\overrightarrow{b}|$.

[2]

OR

If $\stackrel{\rightarrow}{a}=\hat{i}+\widehat{j}+2\hat{k}$ and $\stackrel{\rightarrow}{b}=2\hat{i}+\hat{j}-\hat{k}$ then $\stackrel{\rightarrow}{}$ find the unit vector in the direction of

- i) $\vec{6b}$
- ii) $2\vec{a} \vec{b}$
- 24. Find the vector equation of the line passing through the point A(1, 2, -1) and parallel to the line 5x-25 = 14-7y [2] = 35z.
- 25. Random variable X has the following distribution

[2]

X	1	2	3	4	5	6	7	8
P(X)	0.15	0.23	0.12	0.10	0.20	0.08	0.07	0.05

For the event $E = \{X \text{ is prime number}\}\$ and $F = \{X < 4\}\$ find P(EUF).

Section C

26. Find the inverse of matrix
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

[3]

[5]

OR

Given
$$A = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 9 & 6 \end{bmatrix}$$
 $and B = \begin{bmatrix} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{bmatrix}$ Is (AB)' = (B'A')?

27. If y= sin⁻¹x, then show that
$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$$
 [3]

If f(X) is continuous at X = 0, where

$$\left\{egin{array}{ll} rac{\sin x}{x} + \cos x, & for \ x>0 \ rac{4(1-\sqrt{1-x)}}{x}, & for \ x<0 \end{array}
ight., then \ find \ f(0).$$

28. Evaluate
$$\int_0^1 tan^{-1}xdx$$

29. Find the solution of the differential equation
$$\frac{dy}{dx} = \frac{y(1+x)}{x(y+1)}$$
 [3]

OR

If dy/dx = $\sin(X+y) + \cos(X+y)$, y(0)=0, then find $\tan\left(\frac{x+y}{2}\right)$

- 30. A vector has \vec{r} magnitude 14 and direction ratios (2,3,-6) find the direction cosines and components of \vec{r} given [3] that makes and acute angle with x axis.
- Find the foot of perpendicular from the point (2,3,-8) to the line $\frac{4-x}{2} = \frac{y}{6} = \frac{1-2}{3}$. Also find the perpendicular 31. [3] distance from the given point to the line.

Section D

32. Solve the following LPP graphically.

Maximize Z = 150x + 250y

Subject to constraints, X+y < 35, 1000x+2000y < 50000; X,y > 0.

Find the number of point(s) at which the objective function Z = 4x + 3y can be minimum subjected to the constraints $3x + 4y \le 24$, $8x + 3y \le 48$, $x \le 5$, $y \le 6$; $x,y \ge 0$

33. If
$$A = \begin{bmatrix} 23 \\ 1 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

34. Find $\int \sin^3 x \cos \frac{x}{2} dx$

[5]

34. Find
$$\int \sin^3 x \cos \frac{x}{2} dx$$
 [5]

35. Show that
$$y = \log(X + \sqrt{x^2 + a^2})^2$$
 satisfy the differential equation $(x^2 + a^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$ [5]

36. Case study 1: Read the following passage and answer the questions given below.

[4] In the math class, the teacher asked a student to construct a triangle on a blackboard and name it as PQR.Two angles P and Q where given to be equal to $tan^{-1}\left(\frac{1}{3}\right)$ and $tan^{-1}\left(\frac{1}{2}\right)$ respectively.

- i) find the value of cos(P+Q+R).
- ii) find the value of $\cos P + \sin P$.
- iii) find the value of $\sin^2 P + \sin^2 Q$.

OR

If $P = \cos^{-1}x$, then find the value of $10x^2$.

37. Case study 2:Read the following passage and answer the questions given below:

[4]

A night before sleep grandfather gave a puzzle to Rohan and Payal .The probability of solving this specific puzzle independently by Rohan and Payal are 1/2and 1/3 respectively.

- i) find the probability that both solved the puzzle.
- ii) find the probability that puzzle is solved by Rohan but not by Payal.
- iii) find the probability that puzzle is solved.

OR

Find the probability that exactly one of them solved the puzzle.

38. Case study 3: Read the following passage and answer the questions given below;

[4]

A Concert is organised every year in the stadium that can hold 42000 spectators with ticket price of rs 10 . The average attendance has been 27000. Some financial expert estimated that price of a ticket should be determined by the function $p(x)=19-\frac{x}{3000}$ where X is the number of tickets sold.

- i) find the range of X and revenue R as a function of x.
- ii) find the value of x for which revenue is maximum.